
ECE 604, Lecture 18

Wed, Feb 20, 2019

Contents

1 Hollow Waveguides 2
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Absence of TEM Mode in a Hollow Waveguide . . . . . . . . . . 2
1.3 TE Case (Ez = 0, Hz 6= 0) . . . . . . . . . . . . . . . . . . . . . . 3
1.4 TM Case (Ez 6= 0, Hz = 0) . . . . . . . . . . . . . . . . . . . . . 5

2 Rectangular Waveguides 6
2.1 TE Modes (H Mode or Hz 6= 0 Mode) . . . . . . . . . . . . . . . 6

Printed on March 24, 2019 at 16 : 42: W.C. Chew and D. Jiao.

1



ECE 604, Lecture 18 Wed, Feb 20, 2019

1 Hollow Waveguides

1.1 Introduction

Hollow waveguides are useful for high-power microwaves. Air has a higher break-
down voltage compared to most materials, and hence, could be a good medium
for propagating high power microwave. Also, they are sufficiently shielded from
the rest of the world so that interference from other sources is minimized. Fur-
thermore, for radio astronomy, they can provide a low-noise system immune to
interference. Air generally has less loss than materials, and loss is often the
source of thermal noise. A low loss waveguide is also a low noise waveguide.

Many waveguide problems can be solved in closed form. An example is the
coaxial waveguide previously discussed. But there are many other waveguide
problems that have closed form solutions. Closed form solutions to Laplace and
Helmholtz equations are obtained by the separation of variables method. The
separation of variables method works only for separable coordinate systems.
There are 11 separable coordinates for Helmholtz equations, but 13 for Laplace
equation. Some examples of separable coordinate systems are cartesian, cylin-
drical, and spherical coordinates. But these three coordinates are about all we
need to know for solving many engineering problems. More complicated cases
are now handled with numerical methods using computers.

When a waveguide has a center conductor or two conductors like a coaxial
cable, it can support a TEM wave where both the electric field and the magnetic
field are orthogonal to the direction of propagation. The uniform plane wave is
a TEM wave, for instance.

However, when the waveguide is hollow or is filled completely with a homo-
geneous medium, without a center conductor, it cannot support a TEM mode
as we shall prove next.

1.2 Absence of TEM Mode in a Hollow Waveguide

Figure 1: Absence of TEM mode in a hollow, enclosed waveguide.
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We would like to prove by contradiction (reductio ad absurdum) that a
hollow waveguide (i.e. without a center conductor) cannot support a TEM
mode as follows. If we assume that TEM mode does exist, then the magnetic
field has to end on itself due to the absence of magnetic charges. It is clear that¸
C
Hs · dl 6= 0 about any closed contour following the magnetic field lines. But

Ampere’s law states that the above is equal to
˛
C

Hs · dl = jω

ˆ
S

D · dS +

ˆ
S

J · dS (1.1)

Hence, this equation cannot be satisfied unless there are Ez component, or
that Jz 6= 0 inside the waveguide. This implies that Ez cannot be zero unless
a center conductor carrying a current J is there. This result contradicts the
absence of Ez, and is contradictory implying the absence of a TEM mode in a
hollow waveguide.

Therefore, in a hollow waveguide filled with homogeneous medium, only TEz
or TMz modes can exist like the case of a layered medium. For a TEz wave
(or TE wave), Ez = 0, Hz 6= 0 while for a TMz wave (or TM wave), Hz = 0,
Ez 6= 0. These classes of problems can be decomposed into two scalar problems
like the layerd medium case, by using the pilot potential method. However,
when the hollow waveguide is filled with a center conductor, the TEM mode
can exist in addition to TE and TM modes.

1.3 TE Case (Ez = 0, Hz 6= 0)

In this case, the field inside the waveguide is TE to z or TEz. To ensure a TE
field, we can write the E field as

E(r) = ∇× ẑΨh(r) (1.2)

Equation (1.2) will guarantee that Ez = 0 due to its construction. Here, Ψh(r)
is a scalar potential and ẑ is the pilot vector.1

The waveguide is assumed source free and filled with a lossless, homogeneous
material. Eq. (1.2) also satisfies the source-free condition since ∇ ·E = 0. And
hence, from Maxwell’s equations, it follows that

(∇2 + β2)E(r) = 0 (1.3)

where β2 = ω2µε. Substituting (1.2) into (1.3), we get

(∇2 + β2)∇× ẑΨh(r) = 0 (1.4)

In the above, we assume that ∇2∇× ẑΨ = ∇× ẑ(∇2Ψ), or that these operators
commute.2 Then it follows that

∇× ẑ(∇2 + β2)Ψh(r) = 0 (1.5)

1It “pilots” the field so that it is transverse to z.
2This is a mathematical parlance, and a commutator is defined to be [A,B] = AB − BA

for two operators A and B. If these two operators commute, then [A,B] = 0.
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Thus, if

(∇2 + β2)Ψh(r) = 0 (1.6)

then (1.5) is satisfied, and so is (1.3). Hence, the E field constructed with (1.2)
satisfies Maxwell’s equations, if Ψh(r) satisfies (1.6).

Figure 2:

Next, we look at the boundary condition for Ψh(r). The boundary condition
for E is that n̂×E = 0 on C, the wall of the waveguide. But from (1.2), using
the back-of-the-cab (BOTC) formula,

n̂×E = n̂× (∇× ẑΨh) = −n̂ · ∇Ψh = 0 (1.7)

In applying the BOTC formula, one has to be mindful that ∇ operates on a
function to its right, and the function Ψh is always placed to the right of the ∇
operator.

In the above n̂·∇ = n̂·∇s where∇s = x̂ ∂
∂x+ŷ ∂

∂y since n̂ has no z component.

The boundary condition (1.7) then becomes

n̂ · ∇sΨh = ∂nΨh = 0 on C (1.8)

which is also known as the homogeneous Neumann boundary condition.
Furthermore, in a waveguide, just as in a transmission line case, we are

looking for traveling solutions of the form exp(∓jβzz) for (1.6), or that

Ψh(r) = Ψhs(rs)e
∓jβz

z

(1.9)
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where rs = x̂x+ ŷy, or in short, Ψhs(rs) = Ψhs(x, y). Thus, ∂nΨh = 0 implies

that ∂nΨhs = 0. With this assumption, ∂2

∂z2 → −βz
2, and (1.6) becomes even

simpler, namely,

(∇s2 + β2 − βz2)Ψhs(rs) = (∇s2 + β2
s )Ψhs(rs) = 0 , ∂nΨhs(rs) = 0, on C

(1.10)

where β2
s = β2−β2

z . The above is a boundary value problem for a 2D waveguide
problem. The above 2D wave equation is also called the reduced wave equation.

1.4 TM Case (Ez 6= 0, Hz = 0)

Repeating similar treatment for TM waves, the TM magnetic field is then

H = ∇× ẑΨe(r) (1.11)

where

(∇2 + β2)Ψe(r) = 0 (1.12)

The corresponding E field is obtained by taking the curl of the magnetic field
in (1.11), and thus the E field is proportional to

E ∼ ∇×∇× ẑΨe(r) = ∇∇ · (ẑΨe)−∇2ẑΨe = ∇ ∂

∂z
Ψe + ẑβ2Ψe (1.13)

Taking the z component of the above, we get

Ez ∼
∂2

∂z2
Ψe + β2Ψe (1.14)

Assuming that

Ψe ∼ e∓jβz
z

(1.15)

then in (1.14), ∂2/∂z2 → −β2
z , and

Ez ∼ (β2 − β2
z )Ψe (1.16)

Therefore, if

Ψe(r) = 0 on C, (1.17)

then,

Ez(r) = 0 on C (1.18)

Equation (1.16) is also called the homogeneous Dirichlet boundary condition.
One can further show from (1.13) that the homogeneous Dirichlet boundary con-
dition also implies that the other components of tangential E are zero, namely
n̂×E = 0 on the waveguide wall C.
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Thus, with some manipulation, the boundary value problem related to equa-
tion (1.12) reduces to a simpler 2D problem, i.e.,

(∇s2 + β2
s )Ψes(rs) = 0 (1.19)

with the homogeneous Dirichlet boundary condition that

Ψes(rs) = 0, rs on C (1.20)

where we have assumed that

Ψe(r) = Ψes(rs)e
∓jβz

z

(1.21)

To illustrate the above theory, we can solve some simple waveguides problems.

2 Rectangular Waveguides

Rectangular waveguides are among the simplest waveguides to analyze because
closed form solutions exist in cartesian coordinates. One can imagine traveling
waves in the xy directions bouncing off the walls of the waveguide causing
standing waves to exist inside the waveguide.

As shall be shown, it turns out that not all electromagnetic waves can be
guided by a hollow waveguide. Only when the wavelength is short enough, or
the frequency is high enough that an electromagnetic wave can be guided by a
waveguide.

2.1 TE Modes (H Mode or Hz 6= 0 Mode)

For this mode, the scalar potential Ψhs(rs) satisfies

(∇s2 + βs
2)Ψhs(rs) = 0,

∂

∂n
Ψhs(rs) = 0 on C (2.1)

where βs
2 = β2 − βz

2. A viable solution using separation of variables3 for
Ψhs(x, y) is then

Ψhs(x, y) = A cos(βxx) cos(βyy) (2.2)

where βx
2 + β2

y = β2
s . One can see that the above is the representation of

standing waves in the xy directions. It is quite clear that Ψhs(x, y) satisfies
equation (2.1). Furthermore, cosine functions, rather than sine functions are
chosen with the hindsight that the above satisfies the homogenous Neumann
boundary condition at x = 0, and y = 0 surfaces.

3For those who are not familiar with this topic, please consult p. 385 of Kong.
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Figure 3:

To further satisfy the boundary condition at x = a, and y = b surfaces, it is
necessary that the boundary condition for eq. (1.8) is satisfied or that

∂xΨhs(x, y)|x=a ∼ sin(βxa) cos(βyy) = 0, (2.3)

∂yΨhs(x, y)|y=b ∼ cos(βxx) sin(βyb) = 0, (2.4)

The above puts constraints on βx and βy, implying that βxa = mπ, βyb = nπ
where m and n are integers. Hence (2.2) becomes

Ψhs(x, y) = A cos
(mπ
a
x
)

cos
(nπ
b
y
)

(2.5)

where

β2
x + β2

y =
(mπ
a

)2
+
(nπ
b

)2
= β2

s = β2 − βz2 (2.6)

Clearly, (2.5) satisfies the requisite homogeneous Neumann boundary condition
at the entire waveguide wall.

The above condition on β2
s is the guidance condition for the modes in the

waveguide. Furthermore,

βz =
√
β2 − β2

s =

√
β2 −

(mπ
a

)2
−
(nπ
b

)2
(2.7)

Furthermore, from (2.7), when

β2
s =

(mπ
a

)2
+
(nπ
b

)2
> β2 = ω2µε (2.8)

βz becomes pure imaginary and the mode cannot propagate or become evanes-
cent in the z direction.4 For fixed m and n, the frequency at which the above

4We have seen this happening in a plasma medium earlier.
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happens is called the cutoff frequency of the TEmn mode of the waveguide. It
is given by

ωmn,c =
1
√
µε

√(mπ
a

)2
+
(nπ
b

)2
(2.9)

When ω < ωmn,c, the TEmn mode is evanescent and cannot propagate inside
the waveguide. A corresponding cutoff wavelength is then

λmn,c =
2

[
(
m
a

)2
+
(
n
b

)2
]1/2

(2.10)

So when λ > λmn,c, the mode cannot propagate inside the waveguide.
When m = n = 0, then Ψh(r) = Ψ)hs(x, y) exp(∓jβzz) is a function inde-

pendent of x and y. Then E(r) = ∇ × ẑΨh(r) = ∇s × ẑΨh(r) = 0. It turns
out the only way for Hz 6= 0 is for H(r) = ẑH0 which is a static field in the
waveguide. This is not a very interesting mode, and thus TE00 propagating
mode is assumed not to exist and not useful. So the TEmn modes cannot have
both m = n = 0. As such, the TE10 mode, when a > b, is the mode with the
lowest cutoff frequency or longest cutoff wavelength.

For the TE10 mode, for the mode to propagate, from (2.10), it is needed
that

λ < λ10,c = 2a (2.11)

The above has the nice physical meaning that the wavelength has to be smaller
than 2a in order for the mode to fit into the waveguide. As a mnemonic, we can
think that photons have “sizes”, corresponding to its wavelength. Only when
its wavelength is small enough can the photons go into (or be guided by) the
waveguide. The TE10 mode, when a > b, is also the mode with the lowest cutoff
frequency or longest cutoff wavelength.

It is seen with the above analysis, when the wavelength is short enough, or
frequency is high enough, many modes can be guided. Each of these modes has
a different group and phase velocity. But for most applications, a single guided
mode only is desirable. Hence, the knowledge of the cutoff frequencies of the
fundamental mode (the mode with the lowest cutoff frequency) and the next
higher mode is important. This allows one to pick a frequency window within
which only a single mode can propagate in the waveguide.
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